Arduino Projects
![]() |
Time and Gas Sensor with Display
#include <TM1637.h> #include <Wire.h> #include <DS3231.h> #include <config.h> #define CLK 2 //Arduino pins which are connected to Display #define DIO 3 const byte gas_sensor = 0; int gas_level; int redLed = 12; int buzzer = 10; int sensorThres = 400; // Your threshold value int i = 0; TM1637 display(CLK,DIO); //To work with the chip clock and indicator we use the library DS3231 rtc(SDA, SCL); // Init the DS3231 using the hardware interface Time t; // Init a Time-data structure void beeptone() { for(i = 0; i < 255; i = i + 2) { analogWrite(buzzer, i); delay(10); } for(i = 255; i > 1; i = i - 2) { analogWrite(buzzer, i); delay(5); } for(i = 1; i <= 10; i++) { analogWrite(buzzer, 200); delay(100); analogWrite(buzzer, 25); delay(100); } } void setup() { // Serial.begin(9600); // Setup Serial connection display.set(); //Enable and configure the indicator display.init(); rtc.begin(); // Initialize the rtc object // The following lines can be uncommented to set the date and time //rtc.setDOW(WEDNESDAY); // Set Day-of-Week to SUNDAY //rtc.setTime(12, 0, 0); // Set the time to 12:00:00 (24hr format) //rtc.setDate(1, 1, 2014); // Set the date to January 1st, 2014 } void loop() { int8_t timeDisp[4]; //The values to be displayed on each of 4 bits t = rtc.getTime(); //Get data from the DS3231 timeDisp[0] = t.hour / 10; //We receive dozens of hours using integer division timeDisp[1] = t.hour % 10; //Unit obtain hours using modulo timeDisp[2] = t.min / 10; //We do the same with minutes timeDisp[3] = t.min % 10; display.point(POINT_ON); //colon ON display.display(timeDisp); //output it to the screen delay (2000); gas_level= analogRead(gas_sensor); //Gas Sensor get data display.point(POINT_OFF); display.DigitDisplayWrite(CLK,DIO,gas_level); // Serial.println(gas_level); if (gas_level > sensorThres) { digitalWrite(redLed, HIGH); beeptone(); } else { digitalWrite(redLed, LOW); noTone(buzzer); } delay (2000); }
Versatile Kitchen Timer
![]() |
//This code is written by Amandeep Singh const int outpin = 9; // Buzzer Pin int pin1 = 2; //Switch Pins int pin2 = 3; //Switch Pins int pin3 = 4; //Switch Pins int pin4 = 5; //Switch Pins int button = 0; //initial button state void beeptone() { tone(outpin, 500, 500); delay(100); tone(outpin, 1000, 500); delay(100); tone(outpin, 1500, 500); delay(100); tone(outpin, 2000, 500); delay(100); } void setup() { pinMode(pin1, INPUT_PULLUP); pinMode(pin2, INPUT_PULLUP); pinMode(pin3, INPUT_PULLUP); pinMode(pin4, INPUT_PULLUP); } void loop() { button = digitalRead(pin1); if (button == LOW) { delay(5*60*1000); // 5 Minute timer for (int i=0; i<= 50; i++){ beeptone(); } } button = digitalRead(pin2); if (button == LOW) { delay(10*60*1000); // 10 Minute timer for (int i=0; i<= 50; i++){ beeptone(); } } button = digitalRead(pin3); if (button == LOW) { delay(30*60*1000); // 30 Minute timer for (int i=0; i<= 50; i++){ beeptone(); } } button = digitalRead(pin4); if (button == LOW) { delay(60*60*1000); // 1 Hour timer for (int i=0; i<= 50; i++){ beeptone(); } } }
Light Controlled Relay Switch
int sensorPin = A0; // select the input pin for ldr int sensorValue = 0; // variable to store the value coming from the sensor void setup() { pinMode(2, OUTPUT); //pin connected to the relay Serial.begin(9600); } void loop() { // read the value from the sensor: sensorValue = analogRead(sensorPin); Serial.println(sensorValue); //prints the values coming from the sensor on the screen if(sensorValue < 700) //setting a threshold value digitalWrite(2,HIGH); //turn relay ON else digitalWrite(2,LOW); //turn relay OFF delay(100); }
Game of Thrones
Source: [instructables.com]
#define NOTE_B0 31 #define NOTE_C1 33 #define NOTE_CS1 35 #define NOTE_D1 37 #define NOTE_DS1 39 #define NOTE_E1 41 #define NOTE_F1 44 #define NOTE_FS1 46 #define NOTE_G1 49 #define NOTE_GS1 52 #define NOTE_A1 55 #define NOTE_AS1 58 #define NOTE_B1 62 #define NOTE_C2 65 #define NOTE_CS2 69 #define NOTE_D2 73 #define NOTE_DS2 78 #define NOTE_E2 82 #define NOTE_F2 87 #define NOTE_FS2 93 #define NOTE_G2 98 #define NOTE_GS2 104 #define NOTE_A2 110 #define NOTE_AS2 117 #define NOTE_B2 123 #define NOTE_C3 131 #define NOTE_CS3 139 #define NOTE_D3 147 #define NOTE_DS3 156 #define NOTE_E3 165 #define NOTE_F3 175 #define NOTE_FS3 185 #define NOTE_G3 196 #define NOTE_GS3 208 #define NOTE_A3 220 #define NOTE_AS3 233 #define NOTE_B3 247 #define NOTE_C4 262 #define NOTE_CS4 277 #define NOTE_D4 294 #define NOTE_DS4 311 #define NOTE_E4 330 #define NOTE_F4 349 #define NOTE_FS4 370 #define NOTE_G4 392 #define NOTE_GS4 415 #define NOTE_A4 440 #define NOTE_AS4 466 #define NOTE_B4 494 #define NOTE_C5 523 #define NOTE_CS5 554 #define NOTE_D5 587 #define NOTE_DS5 622 #define NOTE_E5 659 #define NOTE_F5 698 #define NOTE_FS5 740 #define NOTE_G5 784 #define NOTE_GS5 831 #define NOTE_A5 880 #define NOTE_AS5 932 #define NOTE_B5 988 #define NOTE_C6 1047 #define NOTE_CS6 1109 #define NOTE_D6 1175 #define NOTE_DS6 1245 #define NOTE_E6 1319 #define NOTE_F6 1397 #define NOTE_FS6 1480 #define NOTE_G6 1568 #define NOTE_GS6 1661 #define NOTE_A6 1760 #define NOTE_AS6 1865 #define NOTE_B6 1976 #define NOTE_C7 2093 #define NOTE_CS7 2217 #define NOTE_D7 2349 #define NOTE_DS7 2489 #define NOTE_E7 2637 #define NOTE_F7 2794 #define NOTE_FS7 2960 #define NOTE_G7 3136 #define NOTE_GS7 3322 #define NOTE_A7 3520 #define NOTE_AS7 3729 #define NOTE_B7 3951 #define NOTE_C8 4186 #define NOTE_CS8 4435 #define NOTE_D8 4699 #define NOTE_DS8 4978 int sensorPin=6; int speakerPin=2; void GameOfThrones(); void setup() { pinMode(speakerPin,OUTPUT); pinMode(sensorPin,INPUT); } void loop() { //play when entering or leaving you thrones, chair etc. //im using negative logic infrared sensor(if positive logic, use HIGH insted of LOW) if(digitalRead(sensorPin)==LOW) { delay(50); if(digitalRead(sensorPin)==LOW) { GameOfThrones(); } } } void GameOfThrones() { for(int i=0; i<4; i++) { tone(speakerPin, NOTE_G4); delay(500); noTone(speakerPin); tone(speakerPin, NOTE_C4); delay(500); noTone(speakerPin); tone(speakerPin, NOTE_DS4); delay(250); noTone(speakerPin); tone(speakerPin, NOTE_F4); delay(250); noTone(speakerPin); } for(int i=0; i<4; i++) { tone(speakerPin, NOTE_G4); delay(500); noTone(speakerPin); tone(speakerPin, NOTE_C4); delay(500); noTone(speakerPin); tone(speakerPin, NOTE_E4); delay(250); noTone(speakerPin); tone(speakerPin, NOTE_F4); delay(250); noTone(speakerPin); } tone(speakerPin, NOTE_G4); delay(500); noTone(speakerPin); tone(speakerPin, NOTE_C4); delay(500); tone(speakerPin, NOTE_DS4); delay(250); noTone(speakerPin); tone(speakerPin, NOTE_F4); delay(250); noTone(speakerPin); tone(speakerPin, NOTE_D4); delay(500); noTone(speakerPin); for(int i=0; i<3; i++) { tone(speakerPin, NOTE_G3); delay(500); noTone(speakerPin); tone(speakerPin, NOTE_AS3); delay(250); noTone(speakerPin); tone(speakerPin, NOTE_C4); delay(250); noTone(speakerPin); tone(speakerPin, NOTE_D4); delay(500); noTone(speakerPin); }// tone(speakerPin, NOTE_G3); delay(500); noTone(speakerPin); tone(speakerPin, NOTE_AS3); delay(250); noTone(speakerPin); tone(speakerPin, NOTE_C4); delay(250); noTone(speakerPin); tone(speakerPin, NOTE_D4); delay(1000); noTone(speakerPin); tone(speakerPin, NOTE_F4); delay(1000); noTone(speakerPin); tone(speakerPin, NOTE_AS3); delay(1000); noTone(speakerPin); tone(speakerPin, NOTE_DS4); delay(250); noTone(speakerPin); tone(speakerPin, NOTE_D4); delay(250); noTone(speakerPin); tone(speakerPin, NOTE_F4); delay(1000); noTone(speakerPin); tone(speakerPin, NOTE_AS3); delay(1000); noTone(speakerPin); tone(speakerPin, NOTE_DS4); delay(250); noTone(speakerPin); tone(speakerPin, NOTE_D4); delay(250); noTone(speakerPin); tone(speakerPin, NOTE_C4); delay(500); noTone(speakerPin); for(int i=0; i<3; i++) { tone(speakerPin, NOTE_GS3); delay(250); noTone(speakerPin); tone(speakerPin, NOTE_AS3); delay(250); noTone(speakerPin); tone(speakerPin, NOTE_C4); delay(500); noTone(speakerPin); tone(speakerPin, NOTE_F3); delay(500); noTone(speakerPin); } tone(speakerPin, NOTE_G4); delay(1000); noTone(speakerPin); tone(speakerPin, NOTE_C4); delay(1000); noTone(speakerPin); tone(speakerPin, NOTE_DS4); delay(250); noTone(speakerPin); tone(speakerPin, NOTE_F4); delay(250); noTone(speakerPin); tone(speakerPin, NOTE_G4); delay(1000); noTone(speakerPin); tone(speakerPin, NOTE_C4); delay(1000); noTone(speakerPin); tone(speakerPin, NOTE_DS4); delay(250); noTone(speakerPin); tone(speakerPin, NOTE_F4); delay(250); noTone(speakerPin); tone(speakerPin, NOTE_D4); delay(500); noTone(speakerPin); for(int i=0; i<4; i++) { tone(speakerPin, NOTE_G3); delay(500); noTone(speakerPin); tone(speakerPin, NOTE_AS3); delay(250); noTone(speakerPin); tone(speakerPin, NOTE_C4); delay(250); noTone(speakerPin); tone(speakerPin, NOTE_D4); delay(500); noTone(speakerPin); } }
Led Cube 3x3x3
http://circuitdigest.com/microcontroller-projects/making-3X3X3-led-cube-with-arduino
Bluetooth Controlled RC Car
Source: instructables.com, instructables.com
const int motor1Pin1 = 10; const int motor1Pin2 = 11; const int motor2Pin1 = 6; const int motor2Pin2 = 5; const int led = 8; const int buzzer = 12; int i = 0; byte serialA; void setup() { Serial.begin(9600); pinMode(motor1Pin1, OUTPUT); pinMode(motor1Pin2, OUTPUT); pinMode(motor2Pin1, OUTPUT); pinMode(motor2Pin2, OUTPUT); pinMode(led, OUTPUT); pinMode(buzzer, OUTPUT); } void alarm() { for (int i=0; i<2; i++) //alarm will ring for 2 seconds once triggered { digitalWrite(buzzer, HIGH); delay(500); digitalWrite(buzzer, LOW); delay(100); } } void loop() { if (Serial.available() > 0) { serialA = Serial.read(); Serial.println(serialA); } switch (serialA) { // forward case 'F': digitalWrite(motor1Pin1, HIGH); digitalWrite(motor1Pin2, LOW); digitalWrite(motor2Pin1, LOW); digitalWrite(motor2Pin2, HIGH); break; // left case 'L': digitalWrite(motor1Pin1, HIGH); digitalWrite(motor1Pin2, LOW); digitalWrite(motor2Pin1, HIGH); digitalWrite(motor2Pin2, LOW); break; // right case 'R': digitalWrite(motor1Pin1, LOW); digitalWrite(motor1Pin2, HIGH); digitalWrite(motor2Pin1, LOW); digitalWrite(motor2Pin2, HIGH); break; // forward left case 'G': digitalWrite(motor1Pin1, HIGH); digitalWrite(motor1Pin2, LOW); digitalWrite(motor2Pin1, LOW); digitalWrite(motor2Pin2, LOW); break; // forward right case 'I': digitalWrite(motor1Pin1, LOW); digitalWrite(motor1Pin2, LOW); digitalWrite(motor2Pin1, LOW); digitalWrite(motor2Pin2, HIGH); break; // backward left case 'H': digitalWrite(motor1Pin1, HIGH); digitalWrite(motor1Pin2, LOW); digitalWrite(motor2Pin1, HIGH); digitalWrite(motor2Pin2, LOW); break; // backward right case 'J': digitalWrite(motor1Pin1, LOW); digitalWrite(motor1Pin2, HIGH); digitalWrite(motor2Pin1, LOW); digitalWrite(motor2Pin2, HIGH); break; // backward case 'B': digitalWrite(motor1Pin1, LOW); digitalWrite(motor1Pin2, HIGH); digitalWrite(motor2Pin1, HIGH); digitalWrite(motor2Pin2, LOW); break; // Stop case 'S': digitalWrite(motor1Pin1, LOW); digitalWrite(motor1Pin2, LOW); digitalWrite(motor2Pin1, LOW); digitalWrite(motor2Pin2, LOW); break; case 'W': digitalWrite(led, HIGH); break; case 'w': digitalWrite(led, LOW); break; case 'V': alarm(); break; } }
Bluetooth RC Car with Speed Control
![]() |
const int motorA1 = 11; // L293 Connection Pin 2 of L293 const int motorA2 = 10; // Pin 7 of L293 const int motorB1 = 6; // Pin 10 of L293 const int motorB2 = 5; // Pin 14 of L293 const int lights = 13; //Leds connected to Arduino UNO Pin 12 const int buzzer = 8 ; //Buzzer,Speaker to Arduino UNO Pin 3 const int BTState = 7; //Bluetooth (HC-06 JY-MCU) State pin on pin 2 of Arduino //Calculate Battery Level const float maxBattery = 8.0; // Change value to your max battery voltage level! int perVolt; // Percentage variable float voltage = 0.0; // Read battery voltage int level; // Use it to make a delay... without delay() function! long previousMillis = -1000*10;// -1000*10=-10sec. to read the first value. If you use 0 then you will take the first value after 10sec. long interval = 1000*10; // interval at which to read battery voltage, change it if you want! (10*1000=10sec) unsigned long currentMillis; //unsigned long currentMillis; int i=0; //Useful Variables int j=0; int state; int vSpeed=200; // Default speed, from 0 to 255 void setup() { pinMode(motorA1, OUTPUT); // Set pins as outputs: pinMode(motorA2, OUTPUT); pinMode(motorB1, OUTPUT); pinMode(motorB2, OUTPUT); pinMode(lights, OUTPUT); pinMode(BTState, INPUT); Serial.begin(9600); // Initialize serial communication at 9600 bits per second: } void loop() { if(digitalRead(BTState)==LOW) { state='S'; } //Stop car when connection lost or bluetooth disconnected if(Serial.available() > 0){ //Save income data to variable 'state' state = Serial.read(); } if (state == '0'){ //Change speed if state is equal from 0 to 4. Values must be from 0 to 255 (PWM) vSpeed=0;} else if (state == '1'){ vSpeed=100;} else if (state == '2'){ vSpeed=200;} else if (state == '3'){ vSpeed=300;} else if (state == '4'){ vSpeed=400;} else if (state == '5'){ vSpeed=500;} else if (state == '6'){ vSpeed=600;} else if (state == '7'){ vSpeed=700;} else if (state == '8'){ vSpeed=800;} else if (state == '9'){ vSpeed=900;} else if (state == 'q'){ vSpeed=1000;} Serial.println(vSpeed); Serial.println(state); /***********************Forward****************************/ //If state is equal with letter 'F', car will go forward! if (state == 'F') { analogWrite(motorA1, vSpeed); analogWrite(motorA2, 0); analogWrite(motorB1, 0); analogWrite(motorB2, 0); } /**********************Forward Left************************/ //If state is equal with letter 'G', car will go forward left else if (state == 'G') { analogWrite(motorA1, vSpeed); analogWrite(motorA2, 0); analogWrite(motorB1, 200); analogWrite(motorB2, 0); } /**********************Forward Right************************/ //If state is equal with letter 'I', car will go forward right else if (state == 'I') { analogWrite(motorA1, vSpeed); analogWrite(motorA2, 0); analogWrite(motorB1, 0); analogWrite(motorB2, 200); } /***********************Backward****************************/ //If state is equal with letter 'B', car will go backward else if (state == 'B') { analogWrite(motorA1, 0); analogWrite(motorA2, vSpeed); analogWrite(motorB1, 0); analogWrite(motorB2, 0); } /**********************Backward Left************************/ //If state is equal with letter 'H', car will go backward left else if (state == 'H') { analogWrite(motorA1, 0); analogWrite(motorA2, vSpeed); analogWrite(motorB1, 200); analogWrite(motorB2, 0); } /**********************Backward Right************************/ //If state is equal with letter 'J', car will go backward right else if (state == 'J') { analogWrite(motorA1, 0); analogWrite(motorA2, vSpeed); analogWrite(motorB1, 0); analogWrite(motorB2, 200); } /***************************Left*****************************/ //If state is equal with letter 'L', wheels will turn left else if (state == 'L') { analogWrite(motorA1, 0); analogWrite(motorA2, 0); analogWrite(motorB1, 200); analogWrite(motorB2, 0); } /***************************Right*****************************/ //If state is equal with letter 'R', wheels will turn right else if (state == 'R') { analogWrite(motorA1, 0); analogWrite(motorA2, 0); analogWrite(motorB1, 0); analogWrite(motorB2, 200); } /************************Lights*****************************/ //If state is equal with letter 'W', turn leds on or of off else if (state == 'W') { if (i==0){ digitalWrite(lights, HIGH); i=1; } else if (i==1){ digitalWrite(lights, LOW); i=0; } state='n'; } /**********************Horn sound***************************/ //If state is equal with letter 'V', play (or stop) horn sound else if (state == 'V'){ if (j==0){ tone(buzzer, 1000);//Speaker on j=1; } else if (j==1){ noTone(buzzer); //Speaker off j=0; } state='n'; } /************************Stop*****************************/ //If state is equal with letter 'S', stop the car else if (state == 'S'){ analogWrite(motorA1, 0); analogWrite(motorA2, 0); analogWrite(motorB1, 0); analogWrite(motorB2, 0); } /***********************Battery*****************************/ currentMillis = millis(); //Read battery voltage every 10sec. if(currentMillis - (previousMillis) > (interval)) { previousMillis = currentMillis; voltage = (analogRead(A0)*5.015 / 1024.0)*11.132; //Read voltage from analog pin A0 and make calibration //Calculate percentage... perVolt = (voltage*100)/ maxBattery; if (perVolt<=75) { level=0; } else if (perVolt>75 && perVolt<=80) { level=1; } // Battery level else if (perVolt>80 && perVolt<=85) { level=2; } //Min ------------------------ Max else if (perVolt>85 && perVolt<=90) { level=3; } // | 0 | 1 | 2 | 3 | 4 | 5 | > else if (perVolt>90 && perVolt<=95) { level=4; } // ------------------------ else if (perVolt>95) { level=5; } Serial.println(level); } }
Obstacle Avoiding Robot
![]() |
Bluetooth Controlled RGB LED Strip
Source: arduino.cc,
Download the AndroidunoBt App from: play.google.com
- Reading a serial ASCII-encoded string.
This sketch demonstrates the Serial parseInt() function. It looks for an ASCII string of comma-separated values. It parses them into ints, and uses those to fade an RGB LED.
Circuit: Common-Cathode RGB LED wired like so:
* Red anode: digital pin 3 * Green anode: digital pin 5 * Blue anode: digital pin 6
// pins for the LEDs: const int redPin = 3; const int greenPin = 5; const int bluePin = 6; void setup() { // initialize serial: Serial.begin(9600); // make the pins outputs: pinMode(redPin, OUTPUT); pinMode(greenPin, OUTPUT); pinMode(bluePin, OUTPUT); } void loop() { while (Serial.available() > 0) { // look for the next valid integer in the incoming serial stream: int red = Serial.parseInt(); // do it again: int green = Serial.parseInt(); // do it again: int blue = Serial.parseInt(); // look for the newline. That's the end of your sentence: if (Serial.read() == '\n') { // constrain the values to 0 - 255 and invert // if you're using a common-cathode LED, just use "constrain(color, 0, 255);" red = constrain(red, 0, 255); green = constrain(green, 0, 255); blue = constrain(blue, 0, 255); // fade the red, green, and blue legs of the LED: analogWrite(redPin, red); analogWrite(greenPin, green); analogWrite(bluePin, blue); // print the three numbers in one string as hexadecimal: Serial.print(red, HEX); Serial.print(green, HEX); Serial.println(blue, HEX); } } }
IR Controlled RGB LED Strip
Source: [arduino-cool.blogspot.in]
#include <IRremote.h> int RECV_PIN = 8; int R_PIN = 10; int G_PIN = 6; int B_PIN = 9; #define ON 0XFFB04F #define OFF 0xFFF807 #define BRIGHTNESS_UP 0xFF906F #define BRIGHTNESS_DOWN 0xFFB847 #define FLASH 0xFFB24D #define STROBE 0xFF00FF #define FADE 0xFF58A7 #define SMOOTH 0xFF30CF #define RED 0xFF9867 #define GREEN 0XFFD827 #define BLUE 0xFF8877 #define WHITE 0xFFA857 #define ORANGE 0xFFE817 #define YELLOW_DARK 0xFF02FD #define YELLOW_MEDIUM 0xFF50AF #define YELLOW_LIGHT 0xFF38C7 #define GREEN_LIGHT 0XFF48B7 #define GREEN_BLUE1 0XFF32CD #define GREEN_BLUE2 0XFF7887 #define GREEN_BLUE3 0XFF28D7 #define BLUE_RED 0XFF6897 #define PURPLE_DARK 0XFF20DF #define PURPLE_LIGHT 0XFF708F #define PINK 0XFFF00F #define INCREMENTO 10 unsigned long rgb = 0; byte r,g,b; IRrecv irrecv(RECV_PIN); decode_results results; void setup() { irrecv.enableIRIn(); // Inicializamos el receptor Serial.begin(9600); pinMode(R_PIN, OUTPUT); pinMode(G_PIN, OUTPUT); pinMode(B_PIN, OUTPUT); } void variar (byte* color, char valor) { if (valor > 0) { if ( *color + valor <= 255) { *color += valor; } else { *color = 255; } } else { if (*color + valor >= 0) { *color += valor; } else { *color = 0; } } } void RGB(unsigned long valor) { r = valor >> 16; g = (valor >> 8) & 0xFF; b = valor & 0xFF; } void loop() { if (irrecv.decode(&results)) { if ( results.value != 0xFFFFFFFF) { switch (results.value) { case BRIGHTNESS_UP : variar (&r, INCREMENTO); variar (&g, INCREMENTO); variar (&b, INCREMENTO); break; case BRIGHTNESS_DOWN : variar (&r, -INCREMENTO); variar (&g, -INCREMENTO); variar (&b, -INCREMENTO); break; case OFF : r = g = b = 0; break; case RED : RGB(0x00FF0000); break; case GREEN : RGB(0x0000FF00); break; case BLUE : RGB(0x000000FF); break; case WHITE : RGB(0x00FFFFFF); break; case ORANGE : RGB(0x00FF7F00); break; case YELLOW_DARK : RGB(0x00FFAA00); break; case YELLOW_MEDIUM : RGB(0x00FFD400); break; case YELLOW_LIGHT : RGB(0x00FFFF00); break; case GREEN_LIGHT : RGB(0x0000FFAA); break; case GREEN_BLUE1 : RGB(0x0000FFFF); break; case GREEN_BLUE2 : RGB(0x0000AAFF); break; case GREEN_BLUE3 : RGB(0x000055FF); break; case BLUE_RED : RGB(0x00000080); break; case PURPLE_DARK : RGB(0x003F0080); break; case PURPLE_LIGHT : RGB(0x007A00BF); break; case PINK : RGB(0x00FF00FF); break; } Serial.println(results.value, HEX); Serial.println(r,DEC); Serial.println(g, DEC); Serial.println(b, DEC); analogWrite(R_PIN,r); analogWrite(G_PIN,g); analogWrite(B_PIN,b); } irrecv.resume(); // Receive the next value } }
Running Lights
http://www.14core.com/led-running-light-or-chasing-light-effect/
Running Lights with Speed Control using Potentiometer
Source: stackexchange.com
// Sketch re: http://arduino.stackexchange.com/questions/19605/running-light-without-delay-and-a-potentiometer // Set constants for pins with LEDs enum { led1 = 13, led2 = 12, led3 = 11, led4 = 10, led5 = 9, led6 = 8, led7 = 7, led8 = 6, led9 = 5, led10 = 4}; // Make an array with the LED pin numbers byte ledPins[] = { led1, led2, led3, led4, led5, led6, led7, led8, led9, led10 }; // # of entries in ledPins: enum { numLeds = sizeof(ledPins) / sizeof ledPins[0]}; //count to track which LEDs are HIGH and which are LOW int count = numLeds-1; // Will roll over to 0 // To store last time LED was updated unsigned long previousMillis = 0; void setup() { // initialize digital pin outputs for (byte i=0; i<numLeds; ++i) pinMode(ledPins[i], OUTPUT); // initialize serial communication at 9600 bits per second: Serial.begin(9600); } // loop() runs over and over again forever: void loop() { unsigned long currentMillis = millis(); // read input on analog pin 0: int deli = analogRead(A0); float voltage = deli * (5.0 / 1023.0); // Print out the value and corresponding voltage you read: // Serial.println("Value: %d and Voltage: %f", pause, voltage); Serial.print("Value: "); Serial.println(deli); Serial.print("Volts: "); Serial.println(voltage); if (currentMillis - previousMillis >= deli) { // Save the last time we blinked the LED previousMillis = currentMillis; // Turn off current LED, turn on next one digitalWrite(ledPins[count], LOW); count = (count+1) % numLeds; digitalWrite(ledPins[count], HIGH); } }
LED Matrix Clock
https://123led.wordpress.com/mini-led-clock/
![]() |
RF 433 MHz Module
Source: randomnerdtutorials.com
- Download the Library file:
https://lastminuteengineers.com/libraries/RadioHead-1.84.zip
- Connect the circuit as below:
Arduino Tx Module 5v VCC GND GND 12 Data
Arduino Rx Module 5v VCC GND GND 11 Data
- Transmitter Side Code
#include <RH_ASK.h> #include <SPI.h> // Not actually used but needed to compile RH_ASK driver; void setup() { Serial.begin(9600); // Debugging only if (!driver.init()) Serial.println("init failed"); } void loop() { const char *msg = "Hello World!"; driver.send((uint8_t *)msg, strlen(msg)); driver.waitPacketSent(); delay(1000); }
- Receiver Side Code
#include <RH_ASK.h> #include <SPI.h> // Not actualy used but needed to compile RH_ASK driver; void setup() { Serial.begin(9600); // Debugging only if (!driver.init()) Serial.println("init failed"); } void loop() { uint8_t buf[12]; uint8_t buflen = sizeof(buf); if (driver.recv(buf, &buflen)) // Non-blocking { int i; // Message with a good checksum received, dump it. Serial.print("Message: "); Serial.println((char*)buf); } }
Motor Shield
Source: lastminuteengineers.com
- Single DC power supply for both Arduino and motors:
Plug Voltage < 12V into the DC jack on the Arduino or the 2-pin EXT_PWR block on the shield. Jumper ON
- (Recommended) Arduino via USB and motors via DC power supply:
Arduino plug in the USB cable. Then connect the motor supply to the EXT_PWR block on the shield. Jumper OFF
- Arduino Jack and motors via DC power supply:
Plug in the supply for the Arduino into the DC jack. Connect the motor supply to the EXT_PWR block. Jumper OFF
Warning:
DO NOT supply power to the EXT_PWR input when jumper is in place. It may damage the motor shield and also your Arduino!
The shield offers below features:
The shield comes with a pulldown resistor array to keep motors switched off during power-up. The on-board LED indicates the motor power supply is Okay. If it is not lit, the motors will not run. The RESET is nothing but Arduino’s reset button. It just brought up top for convenience.
{{#widget:DISQUS |id=networkm |uniqid=Arduino Projects |url=https://aman.awiki.org/wiki/Arduino_Projects }}