Arduino Projects

From Network Security Wiki


        This page is under construction.


Time and Gas Sensor with Display

Time and Gas Sensor Display
#include <TM1637.h>
#include <Wire.h>
#include <DS3231.h>
#include <config.h>
#define CLK 2             //Arduino pins which are connected to  Display
#define DIO 3

const byte gas_sensor = 0; 
int gas_level;
int redLed = 12;
int buzzer = 10;
int sensorThres = 400;               // Your threshold value
int i = 0;
TM1637 display(CLK,DIO);               //To work with the chip clock and indicator we use the library
DS3231  rtc(SDA, SCL);                // Init the DS3231 using the hardware interface
Time  t;                               // Init a Time-data structure

void beeptone()
{
  for(i = 0; i < 255; i = i + 2)
     {
     analogWrite(buzzer, i);
     delay(10);
     }
  for(i = 255; i > 1; i = i - 2)
     {
     analogWrite(buzzer, i);
     delay(5);
     }
  for(i = 1; i <= 10; i++)
     {
     analogWrite(buzzer, 200);
     delay(100);
     analogWrite(buzzer, 25);
     delay(100);
     }
}

void setup()
{
//  Serial.begin(9600);                 // Setup Serial connection
  display.set();                      //Enable and configure the indicator
  display.init();
  rtc.begin();                      // Initialize the rtc object
  // The following lines can be uncommented to set the date and time
  //rtc.setDOW(WEDNESDAY);            // Set Day-of-Week to SUNDAY
  //rtc.setTime(12, 0, 0);            // Set the time to 12:00:00 (24hr format)
  //rtc.setDate(1, 1, 2014);          // Set the date to January 1st, 2014
}

void loop()
{
  int8_t timeDisp[4];                 //The values to be displayed on each of 4 bits
  t = rtc.getTime();                  //Get data from the DS3231
  timeDisp[0] = t.hour / 10;          //We receive dozens of hours using integer division
  timeDisp[1] = t.hour % 10;          //Unit obtain hours using modulo
  timeDisp[2] = t.min / 10;           //We do the same with minutes
  timeDisp[3] = t.min % 10;
  display.point(POINT_ON);            //colon ON
  display.display(timeDisp);          //output it to the screen
  delay (2000);

  gas_level= analogRead(gas_sensor);  //Gas Sensor get data
  display.point(POINT_OFF);
  display.DigitDisplayWrite(CLK,DIO,gas_level);
//  Serial.println(gas_level);
    if (gas_level > sensorThres)
  {
    digitalWrite(redLed, HIGH);
    beeptone();
  }
  else
  {
    digitalWrite(redLed, LOW);
    noTone(buzzer);
  }
  delay (2000);
}

Versatile Kitchen Timer

        This code can be re-wired using capacitative touch sensor.
Kitchen Versatile Timer
//This code is written by Amandeep Singh

const int outpin = 9;    // Buzzer Pin
int pin1 = 2;            //Switch Pins
int pin2 = 3;            //Switch Pins
int pin3 = 4;            //Switch Pins
int pin4 = 5;            //Switch Pins
int button = 0;          //initial button state

void beeptone()
{
  tone(outpin, 500, 500);
  delay(100);
  tone(outpin, 1000, 500);
  delay(100);
  tone(outpin, 1500, 500);
  delay(100);
  tone(outpin, 2000, 500);
  delay(100);
}

void setup()
{
  pinMode(pin1, INPUT_PULLUP);
  pinMode(pin2, INPUT_PULLUP);
  pinMode(pin3, INPUT_PULLUP);
  pinMode(pin4, INPUT_PULLUP);
}

void loop()
{
  button = digitalRead(pin1);
  if (button == LOW)
  {
      delay(5*60*1000);               // 5 Minute timer
      for (int i=0; i<= 50; i++){
      beeptone();
      }
  }
  button = digitalRead(pin2);
  if (button == LOW)
  {
      delay(10*60*1000);               // 10 Minute timer
      for (int i=0; i<= 50; i++){
      beeptone();
      }
  }
    button = digitalRead(pin3);
  if (button == LOW)
  {
      delay(30*60*1000);               // 30 Minute timer
      for (int i=0; i<= 50; i++){
      beeptone();
      }
  }
    button = digitalRead(pin4);
  if (button == LOW)
  {
      delay(60*60*1000);               // 1 Hour timer
      for (int i=0; i<= 50; i++){
      beeptone();
      }
  }
}

Light Controlled Relay Switch

LDR Relay Switch
int sensorPin = A0;   // select the input pin for ldr
int sensorValue = 0;  // variable to store the value coming from the sensor

void setup() {
  pinMode(2, OUTPUT); //pin connected to the relay
  Serial.begin(9600);
}

void loop() {
  // read the value from the sensor:
  sensorValue = analogRead(sensorPin);    
  Serial.println(sensorValue);       //prints the values coming from the sensor on the screen
  
  if(sensorValue < 700) //setting a threshold value
  digitalWrite(2,HIGH); //turn relay ON
  
  else digitalWrite(2,LOW); //turn relay OFF
  
  delay(100);                  
}

Game of Thrones

Source: [instructables.com]

#define NOTE_B0  31
#define NOTE_C1  33
#define NOTE_CS1 35
#define NOTE_D1  37
#define NOTE_DS1 39
#define NOTE_E1  41
#define NOTE_F1  44
#define NOTE_FS1 46
#define NOTE_G1  49
#define NOTE_GS1 52
#define NOTE_A1  55
#define NOTE_AS1 58
#define NOTE_B1  62
#define NOTE_C2  65
#define NOTE_CS2 69
#define NOTE_D2  73
#define NOTE_DS2 78
#define NOTE_E2  82
#define NOTE_F2  87
#define NOTE_FS2 93
#define NOTE_G2  98
#define NOTE_GS2 104
#define NOTE_A2  110
#define NOTE_AS2 117
#define NOTE_B2  123
#define NOTE_C3  131
#define NOTE_CS3 139
#define NOTE_D3  147
#define NOTE_DS3 156
#define NOTE_E3  165
#define NOTE_F3  175
#define NOTE_FS3 185
#define NOTE_G3  196
#define NOTE_GS3 208
#define NOTE_A3  220
#define NOTE_AS3 233
#define NOTE_B3  247
#define NOTE_C4  262
#define NOTE_CS4 277
#define NOTE_D4  294
#define NOTE_DS4 311
#define NOTE_E4  330
#define NOTE_F4  349
#define NOTE_FS4 370
#define NOTE_G4  392
#define NOTE_GS4 415
#define NOTE_A4  440
#define NOTE_AS4 466
#define NOTE_B4  494
#define NOTE_C5  523
#define NOTE_CS5 554
#define NOTE_D5  587
#define NOTE_DS5 622
#define NOTE_E5  659
#define NOTE_F5  698
#define NOTE_FS5 740
#define NOTE_G5  784
#define NOTE_GS5 831
#define NOTE_A5  880
#define NOTE_AS5 932
#define NOTE_B5  988
#define NOTE_C6  1047
#define NOTE_CS6 1109
#define NOTE_D6  1175
#define NOTE_DS6 1245
#define NOTE_E6  1319
#define NOTE_F6  1397
#define NOTE_FS6 1480
#define NOTE_G6  1568
#define NOTE_GS6 1661
#define NOTE_A6  1760
#define NOTE_AS6 1865
#define NOTE_B6  1976
#define NOTE_C7  2093
#define NOTE_CS7 2217
#define NOTE_D7  2349
#define NOTE_DS7 2489
#define NOTE_E7  2637
#define NOTE_F7  2794
#define NOTE_FS7 2960
#define NOTE_G7  3136
#define NOTE_GS7 3322
#define NOTE_A7  3520
#define NOTE_AS7 3729
#define NOTE_B7  3951
#define NOTE_C8  4186
#define NOTE_CS8 4435
#define NOTE_D8  4699
#define NOTE_DS8 4978
int sensorPin=6;
int speakerPin=2;
void GameOfThrones();
void setup()
  {
    pinMode(speakerPin,OUTPUT);
    pinMode(sensorPin,INPUT);
  }
void loop()
  {  //play when entering or leaving you thrones, chair etc.
      //im using negative logic infrared sensor(if positive logic, use HIGH insted of LOW)
    if(digitalRead(sensorPin)==LOW)
    {
     delay(50);
     if(digitalRead(sensorPin)==LOW)
      {
       GameOfThrones();
      } 
    } 
  }

  
void GameOfThrones()
  {
    for(int i=0; i<4; i++)
    {
    tone(speakerPin, NOTE_G4);
    delay(500);
    noTone(speakerPin);
    tone(speakerPin, NOTE_C4);
    delay(500);
    noTone(speakerPin);
    tone(speakerPin, NOTE_DS4);
    delay(250);
    noTone(speakerPin);
    tone(speakerPin, NOTE_F4);
    delay(250);
    noTone(speakerPin);
    }
    for(int i=0; i<4; i++)
    {
    tone(speakerPin, NOTE_G4);
    delay(500);
    noTone(speakerPin);
    tone(speakerPin, NOTE_C4);
    delay(500);
    noTone(speakerPin);
    tone(speakerPin, NOTE_E4);
    delay(250);
    noTone(speakerPin);
    tone(speakerPin, NOTE_F4);
    delay(250);
    noTone(speakerPin);
    }
        tone(speakerPin, NOTE_G4);
        delay(500);
        noTone(speakerPin);
        tone(speakerPin, NOTE_C4);
        delay(500);
        tone(speakerPin, NOTE_DS4);
        delay(250);
        noTone(speakerPin);
        tone(speakerPin, NOTE_F4);
        delay(250);
        noTone(speakerPin);
        tone(speakerPin, NOTE_D4);
        delay(500);
        noTone(speakerPin);
    for(int i=0; i<3; i++)
    {
    tone(speakerPin, NOTE_G3);
    delay(500);
    noTone(speakerPin);
    tone(speakerPin, NOTE_AS3);
    delay(250);
    noTone(speakerPin);
    tone(speakerPin, NOTE_C4);
    delay(250);
    noTone(speakerPin);
    tone(speakerPin, NOTE_D4);
    delay(500);
    noTone(speakerPin);
    }//
        tone(speakerPin, NOTE_G3);
        delay(500);
        noTone(speakerPin);
        tone(speakerPin, NOTE_AS3);
        delay(250);
        noTone(speakerPin);
        tone(speakerPin, NOTE_C4);
        delay(250);
        noTone(speakerPin);
        tone(speakerPin, NOTE_D4);
        delay(1000);
        noTone(speakerPin);
        
        tone(speakerPin, NOTE_F4);
        delay(1000);
        noTone(speakerPin);
        tone(speakerPin, NOTE_AS3);
        delay(1000);
        noTone(speakerPin);
        tone(speakerPin, NOTE_DS4);
        delay(250);
        noTone(speakerPin);
        tone(speakerPin, NOTE_D4);
        delay(250);
        noTone(speakerPin);
        tone(speakerPin, NOTE_F4);
        delay(1000);
        noTone(speakerPin);
        tone(speakerPin, NOTE_AS3);
        delay(1000);
        noTone(speakerPin);
        tone(speakerPin, NOTE_DS4);
        delay(250);
        noTone(speakerPin);
        tone(speakerPin, NOTE_D4);
        delay(250);
        noTone(speakerPin);
        tone(speakerPin, NOTE_C4);
        delay(500);
        noTone(speakerPin);
    for(int i=0; i<3; i++)
    {
    tone(speakerPin, NOTE_GS3);
    delay(250);
    noTone(speakerPin);
    tone(speakerPin, NOTE_AS3);
    delay(250);
    noTone(speakerPin);
    tone(speakerPin, NOTE_C4);
    delay(500);
    noTone(speakerPin);
    tone(speakerPin, NOTE_F3);
    delay(500);
    noTone(speakerPin);
    }
          tone(speakerPin, NOTE_G4);
          delay(1000);
          noTone(speakerPin);
          tone(speakerPin, NOTE_C4);
          delay(1000);
          noTone(speakerPin);
          tone(speakerPin, NOTE_DS4);
          delay(250);
          noTone(speakerPin);
          tone(speakerPin, NOTE_F4);
          delay(250);
          noTone(speakerPin);
          tone(speakerPin, NOTE_G4);
          delay(1000);
          noTone(speakerPin);
          tone(speakerPin, NOTE_C4);
          delay(1000);
          noTone(speakerPin);
          tone(speakerPin, NOTE_DS4);
          delay(250);
          noTone(speakerPin);
          tone(speakerPin, NOTE_F4);
          delay(250);
          noTone(speakerPin);
          tone(speakerPin, NOTE_D4);
          delay(500);
          noTone(speakerPin);
    for(int i=0; i<4; i++)
    {
    tone(speakerPin, NOTE_G3);
    delay(500);
    noTone(speakerPin);
    tone(speakerPin, NOTE_AS3);
    delay(250);
    noTone(speakerPin);
    tone(speakerPin, NOTE_C4);
    delay(250);
    noTone(speakerPin);
    tone(speakerPin, NOTE_D4);
    delay(500);
    noTone(speakerPin);
    }
}

Led Cube 3x3x3

http://circuitdigest.com/microcontroller-projects/making-3X3X3-led-cube-with-arduino


Bluetooth Controlled RC Car

Source: instructables.com, instructables.com

Arduino Bluetooth RC Car
const int motor1Pin1 = 10;
const int motor1Pin2 = 11;
const int motor2Pin1 = 6;
const int motor2Pin2 = 5;
const int led = 8;
const int buzzer = 12;
int i = 0;

byte serialA;


void setup() {
  
 Serial.begin(9600);

    pinMode(motor1Pin1, OUTPUT);
    pinMode(motor1Pin2, OUTPUT);
    pinMode(motor2Pin1, OUTPUT);
    pinMode(motor2Pin2, OUTPUT);
    pinMode(led, OUTPUT);
    pinMode(buzzer, OUTPUT);
}

void alarm()
{
for (int i=0; i<2; i++)                    //alarm will ring for 2 seconds once triggered
{
  digitalWrite(buzzer, HIGH);
  delay(500);
  digitalWrite(buzzer, LOW);
  delay(100);
}
}


void loop() {
if (Serial.available() > 0)
  {
  serialA = Serial.read();
  Serial.println(serialA);
  }
   switch (serialA) {
    // forward
   case 'F':
        digitalWrite(motor1Pin1, HIGH);
        digitalWrite(motor1Pin2, LOW); 
        digitalWrite(motor2Pin1, LOW);
        digitalWrite(motor2Pin2, HIGH);
        break; 
        
         // left
    case 'L':
        digitalWrite(motor1Pin1, HIGH);
        digitalWrite(motor1Pin2, LOW); 
        digitalWrite(motor2Pin1, HIGH);
        digitalWrite(motor2Pin2, LOW);
        break; 
        
    // right
    case 'R':
        digitalWrite(motor1Pin1, LOW); 
        digitalWrite(motor1Pin2, HIGH); 
        digitalWrite(motor2Pin1, LOW);
        digitalWrite(motor2Pin2, HIGH);
        break; 
       
    // forward left
    case 'G':
        digitalWrite(motor1Pin1, HIGH); 
        digitalWrite(motor1Pin2, LOW); 
        digitalWrite(motor2Pin1, LOW);
        digitalWrite(motor2Pin2, LOW);
        break; 
    
    // forward right
    case 'I':
        digitalWrite(motor1Pin1, LOW); 
        digitalWrite(motor1Pin2, LOW); 
        digitalWrite(motor2Pin1, LOW);
        digitalWrite(motor2Pin2, HIGH);
        break; 

    // backward left
    case 'H':
        digitalWrite(motor1Pin1, HIGH); 
        digitalWrite(motor1Pin2, LOW); 
        digitalWrite(motor2Pin1, HIGH);
        digitalWrite(motor2Pin2, LOW);
        break; 
    
    // backward right
    case 'J':
        digitalWrite(motor1Pin1, LOW); 
        digitalWrite(motor1Pin2, HIGH); 
        digitalWrite(motor2Pin1, LOW);
        digitalWrite(motor2Pin2, HIGH);
        break; 
    
    // backward
    case 'B':
        digitalWrite(motor1Pin1, LOW); 
        digitalWrite(motor1Pin2, HIGH);
        digitalWrite(motor2Pin1, HIGH);
        digitalWrite(motor2Pin2, LOW);
        break; 
    
     // Stop
     case 'S':
        digitalWrite(motor1Pin1, LOW); 
        digitalWrite(motor1Pin2, LOW); 
        digitalWrite(motor2Pin1, LOW);
        digitalWrite(motor2Pin2, LOW);
        break;
        
     case 'W':
        digitalWrite(led, HIGH); 
        break;
        
    case 'w':
        digitalWrite(led, LOW); 
        break;
                
     case 'V':
        alarm(); 
        break;
      }
}

Bluetooth RC Car with Speed Control

        Need to implement the Speed control using the enable pins on L298N instead of the Input Pins
Arduino Bluetooth RC Car
  const int motorA1  = 11;         //  L293 Connection   Pin  2 of L293     
  const int motorA2  = 10;       // Pin  7 of L293
  const int motorB1  = 6;        // Pin 10 of L293
  const int motorB2  = 5;        // Pin 14 of L293

  const int lights  = 13;        //Leds connected to Arduino UNO Pin 12
  const int buzzer = 8 ;         //Buzzer,Speaker to Arduino UNO Pin 3
  const int BTState = 7;         //Bluetooth (HC-06 JY-MCU) State pin on pin 2 of Arduino
                                 //Calculate Battery Level
  const float maxBattery = 8.0;  // Change value to your max battery voltage level! 
  int perVolt;                   // Percentage variable 
  float voltage = 0.0;           // Read battery voltage
  int level;
                                 // Use it to make a delay... without delay() function!
  long previousMillis = -1000*10;// -1000*10=-10sec. to read the first value. If you use 0 then you will take the first value after 10sec.  
  long interval = 1000*10;       // interval at which to read battery voltage, change it if you want! (10*1000=10sec)
  unsigned long currentMillis;   //unsigned long currentMillis;

  int i=0;                       //Useful Variables
  int j=0;
  int state;
  int vSpeed=200;                // Default speed, from 0 to 255

void setup() {
    pinMode(motorA1, OUTPUT);    // Set pins as outputs:
    pinMode(motorA2, OUTPUT);
    pinMode(motorB1, OUTPUT);
    pinMode(motorB2, OUTPUT);
    pinMode(lights, OUTPUT); 
    pinMode(BTState, INPUT);    
    Serial.begin(9600);         // Initialize serial communication at 9600 bits per second:
}
 
void loop() {
     if(digitalRead(BTState)==LOW) { state='S'; }   //Stop car when connection lost or bluetooth disconnected
     
    if(Serial.available() > 0){       //Save income data to variable 'state'
      state = Serial.read();   
    }
      if (state == '0'){              //Change speed if state is equal from 0 to 4. Values must be from 0 to 255 (PWM)
      vSpeed=0;}
    else if (state == '1'){
      vSpeed=100;}
    else if (state == '2'){
      vSpeed=200;}
    else if (state == '3'){
      vSpeed=300;}
    else if (state == '4'){
      vSpeed=400;}
 	  else if (state == '5'){
      vSpeed=500;}
    else if (state == '6'){
      vSpeed=600;}
    else if (state == '7'){
      vSpeed=700;}
    else if (state == '8'){
      vSpeed=800;}
    else if (state == '9'){
      vSpeed=900;}
    else if (state == 'q'){
      vSpeed=1000;}
    Serial.println(vSpeed);
    Serial.println(state);    
  /***********************Forward****************************/
  //If state is equal with letter 'F', car will go forward!
    if (state == 'F') {
    	analogWrite(motorA1, vSpeed); 
    	analogWrite(motorA2, 0);
      analogWrite(motorB1, 0);      
      analogWrite(motorB2, 0); 
    }
  /**********************Forward Left************************/
  //If state is equal with letter 'G', car will go forward left
    else if (state == 'G') {
    	analogWrite(motorA1, vSpeed); 
    	analogWrite(motorA2, 0);  
      analogWrite(motorB1, 200);    
      analogWrite(motorB2, 0); 
    }
  /**********************Forward Right************************/
  //If state is equal with letter 'I', car will go forward right
    else if (state == 'I') {
      analogWrite(motorA1, vSpeed); 
      analogWrite(motorA2, 0); 
      analogWrite(motorB1, 0);      
      analogWrite(motorB2, 200); 
    }
  /***********************Backward****************************/
  //If state is equal with letter 'B', car will go backward
    else if (state == 'B') {
    	analogWrite(motorA1, 0);   
    	analogWrite(motorA2, vSpeed); 
      analogWrite(motorB1, 0);   
      analogWrite(motorB2, 0); 
    }
  /**********************Backward Left************************/
  //If state is equal with letter 'H', car will go backward left
    else if (state == 'H') {
    	analogWrite(motorA1, 0);   
    	analogWrite(motorA2, vSpeed); 
      analogWrite(motorB1, 200); 
      analogWrite(motorB2, 0); 
    }
  /**********************Backward Right************************/
  //If state is equal with letter 'J', car will go backward right
    else if (state == 'J') {
    	analogWrite(motorA1, 0);   
    	analogWrite(motorA2, vSpeed); 
      analogWrite(motorB1, 0);   
      analogWrite(motorB2, 200); 
    }
  /***************************Left*****************************/
  //If state is equal with letter 'L', wheels will turn left
    else if (state == 'L') {
    	analogWrite(motorA1, 0);   
    	analogWrite(motorA2, 0); 
      analogWrite(motorB1, 200); 
      analogWrite(motorB2, 0); 
    }
  /***************************Right*****************************/
  //If state is equal with letter 'R', wheels will turn right
    else if (state == 'R') {
    	analogWrite(motorA1, 0);   
    	analogWrite(motorA2, 0); 
      analogWrite(motorB1, 0);   
      analogWrite(motorB2, 200); 		
    }
  /************************Lights*****************************/
  //If state is equal with letter 'W', turn leds on or of off
    else if (state == 'W') {
      if (i==0){  
         digitalWrite(lights, HIGH); 
         i=1;
      }
      else if (i==1){
         digitalWrite(lights, LOW); 
         i=0;
      }
      state='n';
    }
  /**********************Horn sound***************************/
  //If state is equal with letter 'V', play (or stop) horn sound
    else if (state == 'V'){
      if (j==0){  
         tone(buzzer, 1000);//Speaker on 
         j=1;
      }
      else if (j==1){
         noTone(buzzer);    //Speaker off 
         j=0;
      }
      state='n';  
    }
  /************************Stop*****************************/
  //If state is equal with letter 'S', stop the car
    else if (state == 'S'){
        analogWrite(motorA1, 0);  
        analogWrite(motorA2, 0); 
        analogWrite(motorB1, 0);  
        analogWrite(motorB2, 0);
    }
  /***********************Battery*****************************/
    currentMillis = millis();                               //Read battery voltage every 10sec.
    if(currentMillis - (previousMillis) > (interval)) {
       previousMillis = currentMillis; 
       voltage = (analogRead(A0)*5.015 / 1024.0)*11.132;    //Read voltage from analog pin A0 and make calibration
       //Calculate percentage...
       perVolt = (voltage*100)/ maxBattery;
       if      (perVolt<=75)               { level=0; }
       else if (perVolt>75 && perVolt<=80) { level=1; }    //        Battery level
       else if (perVolt>80 && perVolt<=85) { level=2; }    //Min ------------------------   Max
       else if (perVolt>85 && perVolt<=90) { level=3; }    //    | 0 | 1 | 2 | 3 | 4 | 5 | >
       else if (perVolt>90 && perVolt<=95) { level=4; }    //    ------------------------
       else if (perVolt>95)                { level=5; }   
       Serial.println(level);    
    }
}


Obstacle Avoiding Robot

        This section is under construction.

Bluetooth Controlled RGB LED Strip

Source: arduino.cc,

Download the AndroidunoBt App from: play.google.com

File:Bluetooth Controlled RGB LED Strip.jpg
  • Reading a serial ASCII-encoded string.
This sketch demonstrates the Serial parseInt() function.
It looks for an ASCII string of comma-separated values.
It parses them into ints, and uses those to fade an RGB LED.

Circuit: Common-Cathode RGB LED wired like so:

* Red anode: digital pin 3
* Green anode: digital pin 5
* Blue anode: digital pin 6
// pins for the LEDs:
const int redPin = 3;
const int greenPin = 5;
const int bluePin = 6;
  
void setup() {
  // initialize serial:
  Serial.begin(9600);
  // make the pins outputs:
  pinMode(redPin, OUTPUT);
  pinMode(greenPin, OUTPUT);
  pinMode(bluePin, OUTPUT);
}

void loop() {
  while (Serial.available() > 0) {
    // look for the next valid integer in the incoming serial stream:
    int red = Serial.parseInt();
    // do it again:
    int green = Serial.parseInt();
    // do it again:
    int blue = Serial.parseInt();

    // look for the newline. That's the end of your sentence:
    if (Serial.read() == '\n') {
      // constrain the values to 0 - 255 and invert
      // if you're using a common-cathode LED, just use "constrain(color, 0, 255);"
      red = constrain(red, 0, 255);
      green = constrain(green, 0, 255);
      blue = constrain(blue, 0, 255);

      // fade the red, green, and blue legs of the LED:
      analogWrite(redPin, red);
      analogWrite(greenPin, green);
      analogWrite(bluePin, blue);

      // print the three numbers in one string as hexadecimal:
      Serial.print(red, HEX);
      Serial.print(green, HEX);
      Serial.println(blue, HEX);
    }
  }
}

IR Controlled RGB LED Strip

Source: [arduino-cool.blogspot.in]

#include <IRremote.h>

int RECV_PIN = 8;
int R_PIN = 10;  
int G_PIN = 6;
int B_PIN = 9;
 
#define ON                0XFFB04F
#define OFF               0xFFF807
#define BRIGHTNESS_UP     0xFF906F
#define BRIGHTNESS_DOWN   0xFFB847
#define FLASH             0xFFB24D
#define STROBE            0xFF00FF
#define FADE              0xFF58A7
#define SMOOTH            0xFF30CF
 
#define RED               0xFF9867
#define GREEN             0XFFD827
#define BLUE              0xFF8877
#define WHITE             0xFFA857
 
#define ORANGE            0xFFE817
#define YELLOW_DARK       0xFF02FD
#define YELLOW_MEDIUM     0xFF50AF
#define YELLOW_LIGHT      0xFF38C7
 
#define GREEN_LIGHT       0XFF48B7
#define GREEN_BLUE1       0XFF32CD
#define GREEN_BLUE2       0XFF7887
#define GREEN_BLUE3       0XFF28D7
 
#define BLUE_RED          0XFF6897
#define PURPLE_DARK       0XFF20DF
#define PURPLE_LIGHT      0XFF708F
#define PINK              0XFFF00F
 
#define INCREMENTO 10
 
unsigned long rgb = 0;
byte r,g,b;
 
IRrecv irrecv(RECV_PIN);
 
decode_results results;
 
 
void setup()
{
  irrecv.enableIRIn(); // Inicializamos el receptor
  Serial.begin(9600);
  pinMode(R_PIN, OUTPUT);   
  pinMode(G_PIN, OUTPUT);   
  pinMode(B_PIN, OUTPUT);   
}

void variar (byte* color, char valor) {
    if (valor > 0) {
        if ( *color + valor <= 255) {
            *color += valor;
        } else {
            *color = 255;
        }
    } else { 
        if (*color + valor >= 0) {
            *color += valor;
        } else {
            *color = 0;
        }
  }
}
 
void RGB(unsigned long valor) {
   r = valor >> 16; 
   g = (valor >> 8) & 0xFF; 
   b = valor & 0xFF; 
}
 
void loop() {
  if (irrecv.decode(&results)) {
    if ( results.value != 0xFFFFFFFF) {
      switch (results.value) {
           case BRIGHTNESS_UP : 
               variar (&r, INCREMENTO);
               variar (&g, INCREMENTO);
               variar (&b, INCREMENTO);
               break; 
           case BRIGHTNESS_DOWN : 
               variar (&r, -INCREMENTO);
               variar (&g, -INCREMENTO);
               variar (&b, -INCREMENTO);
               break; 
           case OFF :
               r = g = b = 0;
               break;    
           case RED           : RGB(0x00FF0000); break;
           case GREEN         : RGB(0x0000FF00); break;
           case BLUE          : RGB(0x000000FF); break;
           case WHITE         : RGB(0x00FFFFFF); break;
           case ORANGE        : RGB(0x00FF7F00); break;
           case YELLOW_DARK   : RGB(0x00FFAA00); break;
           case YELLOW_MEDIUM : RGB(0x00FFD400); break;
           case YELLOW_LIGHT  : RGB(0x00FFFF00); break;
           case GREEN_LIGHT   : RGB(0x0000FFAA); break;
           case GREEN_BLUE1   : RGB(0x0000FFFF); break;
           case GREEN_BLUE2   : RGB(0x0000AAFF); break;
           case GREEN_BLUE3   : RGB(0x000055FF); break;
           case BLUE_RED      : RGB(0x00000080); break;
           case PURPLE_DARK   : RGB(0x003F0080); break;
           case PURPLE_LIGHT  : RGB(0x007A00BF); break;
           case PINK          : RGB(0x00FF00FF); break;
      }
      Serial.println(results.value, HEX);
      Serial.println(r,DEC);
      Serial.println(g, DEC);
      Serial.println(b, DEC);
      analogWrite(R_PIN,r);
      analogWrite(G_PIN,g);
      analogWrite(B_PIN,b);
    }
    irrecv.resume(); // Receive the next value
  }
}

Running Lights

http://www.14core.com/led-running-light-or-chasing-light-effect/


Running Lights with Speed Control using Potentiometer

Source: stackexchange.com

File:Running Lights with Speed Control using Potentiometer.jpg
// Sketch re: http://arduino.stackexchange.com/questions/19605/running-light-without-delay-and-a-potentiometer
// Set constants for pins with LEDs
enum { led1 = 13, led2 = 12, led3 = 11, led4 = 10, led5 = 9, led6 = 8, led7 = 7, led8 = 6, led9 = 5, led10 = 4};

// Make an array with the LED pin numbers
byte ledPins[] = { led1, led2, led3, led4, led5, led6, led7, led8, led9, led10 };

// # of entries in ledPins:
enum { numLeds = sizeof(ledPins) / sizeof ledPins[0]};

//count to track which LEDs are HIGH and which are LOW
int count = numLeds-1;      // Will roll over to 0

// To store last time LED was updated
unsigned long previousMillis = 0;

void setup() {
  // initialize digital pin outputs
  for (byte i=0; i<numLeds; ++i)
    pinMode(ledPins[i], OUTPUT);

  // initialize serial communication at 9600 bits per second:
  Serial.begin(9600);
}

// loop() runs over and over again forever:
void loop() {
  unsigned long currentMillis = millis();
  // read input on analog pin 0:
  int deli = analogRead(A0);
  float voltage = deli * (5.0 / 1023.0);

  // Print out the value and corresponding voltage you read:
  // Serial.println("Value: %d and Voltage: %f", pause, voltage);
  Serial.print("Value: ");
  Serial.println(deli);
  Serial.print("Volts: ");
  Serial.println(voltage);

  if (currentMillis - previousMillis >= deli) {
    // Save the last time we blinked the LED
    previousMillis = currentMillis;

    // Turn off current LED, turn on next one
    digitalWrite(ledPins[count], LOW);
    count = (count+1) % numLeds;
    digitalWrite(ledPins[count], HIGH);
  }
}

LED Matrix Clock

https://123led.wordpress.com/mini-led-clock/
        This section is under construction.

RF 433 MHz Module

Source: randomnerdtutorials.com

  • Download the Library file:
https://lastminuteengineers.com/libraries/RadioHead-1.84.zip
  • Connect the circuit as below:
Arduino         Tx Module
 5v               VCC
 GND              GND
 12               Data
Arduino         Rx Module
 5v               VCC
 GND              GND
 11               Data
  • Transmitter Side Code
#include <RH_ASK.h>
#include <SPI.h> // Not actually used but needed to compile

RH_ASK driver;

void setup()
{
    Serial.begin(9600);	  // Debugging only
    if (!driver.init())
         Serial.println("init failed");
}

void loop()
{
    const char *msg = "Hello World!";
    driver.send((uint8_t *)msg, strlen(msg));
    driver.waitPacketSent();
    delay(1000);
}


  • Receiver Side Code
#include <RH_ASK.h>
#include <SPI.h> // Not actualy used but needed to compile

RH_ASK driver;

void setup()
{
    Serial.begin(9600);	// Debugging only
    if (!driver.init())
         Serial.println("init failed");
}

void loop()
{
    uint8_t buf[12];
    uint8_t buflen = sizeof(buf);
    if (driver.recv(buf, &buflen)) // Non-blocking
    {
      int i;
      // Message with a good checksum received, dump it.
      Serial.print("Message: ");
      Serial.println((char*)buf);         
    }
}

Motor Shield

Source: lastminuteengineers.com

  • Single DC power supply for both Arduino and motors:
Plug Voltage < 12V into the DC jack on the Arduino or the 2-pin EXT_PWR block on the shield. 
Jumper ON

  • (Recommended) Arduino via USB and motors via DC power supply:
Arduino plug in the USB cable. 
Then connect the motor supply to the EXT_PWR block on the shield. 
Jumper OFF
  • Arduino Jack and motors via DC power supply:
Plug in the supply for the Arduino into the DC jack.
Connect the motor supply to the EXT_PWR block. 
Jumper OFF

Warning:

DO NOT supply power to the EXT_PWR input when jumper is in place. 
It may damage the motor shield and also your Arduino!

The shield offers below features:

The shield comes with a pulldown resistor array to keep motors switched off during power-up.
The on-board LED indicates the motor power supply is Okay. If it is not lit, the motors will not run.
The RESET is nothing but Arduino’s reset button. It just brought up top for convenience.




{{#widget:DISQUS |id=networkm |uniqid=Arduino Projects |url=https://aman.awiki.org/wiki/Arduino_Projects }}